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SUMMARY 

In the past decade it has beensuggested that the use of superposition of particular solutions technique 
may be employed to solve linear systems with considerable programming advantage over the more widely 
used method of superposition of homogeneous and particular solutions, when solving numerically multi- 
point boundary-value problems. The present article on analytical expression for the diseretization errors 
of the Wronskian, induced by the discretization errors of the particular solutions, is found for linear systems 
of ordinary differential equations when single-step methods of numerical integration of the Runge-Kutta 
type are used. It is shown that the analysis of this error can, in some cases, give useful information in the 
estimation of optimum integration step size in the sense that minimum errors, discretization plus round-off, 
are attained during integration. 

1. Introduction 

Except for a few cases where analytical solutions can be obtained, boundary.value problems 

involving a system of  ordinary differential equations have to be solved by a discrete, approxi- 

mate, numerical procedure. In the case of  linear systems, the determination of  the unknown 

initial conditions for which the System satisfy the imposed boundary conditions, can be 

computed fairly efficiently when the superposition of  homogeneous and/or particular solutions 

technique is employed. If  the system is nonlinear, some linearization procedure can be used 

and the superposition technique can be employed on the linearized form of  the system, 

Bellman et al. [1].  

In recent years Childs et al. [2] suggested that the superposition of  particular solutions 

method (see also Fox [3]),  may be employed to solve linear systems with considerable pro- 

gramming advantage over the more widely used technique of  superposition of  homogeneous 

and particular solutions. Moreover, they have found that the method may provide some indi- 

cation of  round-off  error by an analysis of  the behavior of  the Wronskian of  the numerical 

solution with respect to the step size of  the numerical integration and time (the independent 
variable). 
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In this article an analytical expression for the discretization error of the Wronskian (induced 
by the discretization errors of the particular solutions), is found for linear systems of ordinary 
differential equations when single-step methods of numerical integration of the Runge-Kutta 
type are used. It is shown that the analysis of the behavior of this error can, in some cases, 
give useful information in the estimation of optimum integration step size in the sense that 
minimum errors (discretization plus round-off) are attained during integration. 

2. Superposition of particular solutions 

Consider the linear system of ordinary differential equations and associated boundary con- 
ditions 

= A ( t ) y ( t )  + r(t), (la) 
I1 

b~kyk ( t t )  = ~i (i  = 1 , 2 , . . .  , M )  (lb) 
k = l  

where y = (Yl . . . . .  Yn)  is the n-dimensional vector of the dependent variables, A ( t )  is a 
(n x n) square matrix with variable (or constant) elements and r = ( r l , . .  •, rn) is a vector 
function of the independent variable t. Equations ( lb)  represent M boundary conditions 
occurring at times t t. The dot notation is used to denote differentiation with respect to t. 

A solution of (1) by the superposition of particular solutions technique is sought super- 
imposing appropriate particular solutions such that if k is the number of unknown initial 
conditions in (1), we superimpose (k + 1) particular solutions p: = (pl . . . . .  pn J) ( / =  0, 
1 . . . . .  k) which satisfy equation (la), i.e. it is assumed that 

k 

y = ~ cjp j (2) 
j=o 

and 

! ~J = Ap i +  r, (3a) 
( j  = 0 ,  1 . . . .  , k )  

pJ(O) = a j, (3b) 

where a j is an appropriate initial-value vector for the j th  particular solution. 
Taking equations (2) and (3a) into (1 a) we obtain the auxiliary condition which the super- 

position constants cj must satisfy 

k 

cj = 1. (4) 
j = O  

Substituting equation (2) into (lb) and interchanging the two summation operators we obtain 



k n 

~, e.i ~. bikPh(ti)= 3i (i = 1 . . . . .  M)  
j=o k=l 
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(5)  

If we define the vector 13' = (1,31 . . . . .  •M)  and the matrix E = (eo) such that 

e l  i + l  = 1, 

ei+lj+1 

( j  = O, 1 , . . . , k )  

n 

bikp~(ti), (i = 1,2 . . . . .  M)  
k = l  

(6) 

equations (4) and (5) can be combined to form the matrix equation 

E c  = I~' (7 )  

where c = (Co, cl . . . . .  ck) is the vector of  the superposition constants cj which can be deter- 
mined by solving equation (7). If k < M  (number of  initial conditions smaller than the number 
of  imposed boundary conditions) we still can obtain a solution for c by meeting the boundary 
conditions in a least-squares sense, for example. It is assumed that, in the case k = M ,  E is 
not singular. 

When solving the initial-value problems for the particular solutions (3), the use of the fol- 

lowing set of  initial-condition vectors is suggested: 

pO(0 ) = (~o . . . .  ,o~°n), (8) 

pi(0) = (a ° . . . .  , ~ ° + 6 i  . . . .  ,t~°n) (i = 1 , . . . , n )  (9) 

where (a  ° . . . . .  a°n) is the initial-value vector for the base particular solution p°(t).  If the 
number of  unknown initial conditions is,equal to the order of  the system (k = n), the deter- 
minant made up of  the column vectors 

qi = (1,pl,pi2 i . . . . .  p , , ) ,  

D(t) = D(q ° , q l , . . . , q n ) ,  
(10) 

becomes, after subtracting the first column from the others, 

D(t) = D(z I , z 2 . . . . .  z ~) (11a) 

where z i =  p i _ p O  ( i =  1 . . . . .  n). This is recognized as being the Wronskian of  the corre- 
sponding homogeneous system of  (1). From Abel's equation for the Wronskian (cf. for example 
Petrovsky [4]),  

o, , , :  o,:o, expiS: trace,A,: ,, ( l l b )  
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where 

D(0) = 81~2- . . 8n  

is obtained from equations (8), (9) and ( l la) .  The linear independence of the particular 
solutions is guaranteed if 8t ~ 0 (i = 1 . . . . .  n), since, in this case, D(t)4= O. With the use 
of the initial conditions (8) and (9) the Wronskian value can be obtained fairly accurately 
if the integration in equation (11 b) is performed with sufficient accuracy. 

3. The discretization error of  the solution of  the differential equations 

When a numerical solution is sought for the system of equations (1), two sources of error 
are introduced during the computation. The first is the discretization error due to the numerical 

approximation for the derivatives, which are usuallyestimated from a Taylor.series expansion. 
The second is the round-off error which is due to the fact that in most cases the numbers 
cannot be calculated with infinite precision because of the limited accuracy of any computing 
equipment. 

In this work an analytical expression is sought for the discretization error of the Wronskian, 
induced by the discretization errors of the particular solutions of the system, when single.step 
methods of numerical integration are used. As will be shown later, for some cases, the analysis 
of the behavior of the error of discretization of the Wronskian may give useful information 

in the estimation of optimum integration step, in the sense that minimum errors (discretization 
plus round-off) are attained during integration. 

In order to obtain an expression for the discretization error of the Wronskian, an estimation 
of the error of the particular solutions is needed. 

Let us consider the corresponding homogeneous system of (3) 

= Az = f( t ,z) ,  z(0) = Zo. (12) 

A single-step method of solution of (12) is given by the formula 

Zo = z(O), 
(13) 

Zn+l = z n + h O ( t ,  zn,h) (n = 0 , 1 , 2  . . . .  ) 

where h is the integration step and ®(t, Zn, h) is the increment function, Henrici [5], and a 
lower subscript refers to the 'time level'. 

Defining the truncation-error vector e(t) as 

e(t) = zn(t) -- z(tn) (14) 

where zn(t) is the exact vector obtained from (13) and Z(tn) the exact solution of (12) at 
tn = to + nh, an asymptotic formula for the magnified error 



s(t) = h-Pe(t) 

is given from the solution of 

= G( t ) s+  ?( t ,z) ,  

where 

a ( t )  = ~ (t, z 

and 
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(15) 

s(0) = 0, (16) 

1 0P9 (t ,z,  0) 1 dPf( t , z )  
9(t, z) = (17) 

p ! 0h p (p + 1)! dt p 

where p is the order of integration of the numerical method (cf. Henrici [5]). For a linear 
system such as (12) it can be shown that G(t )=A( t ) .  The expression for ?(t,  z), called by 
Henrici the principal-error function, is considerably more complex; it not only involves the 
function f(t,  z) (equation (12)) but also the increment function O(t, z, h) which defines the 
numerical algorithm of integration. 

Restricting our analysis to methods of integration of the Runge-Kutta type, the increment 
function for the second and fourth order methods are (cf. Henrici op. cit.): 
(a) Runge-Kutta of order two, 

(b) Runge-Kutta of order four (classical case), 

• = ~(kl + 2k2 + 2ks + k4) (19) 

where 

kl = f(t ,z),  

2 , z + ~ k l  , 

k3 = f ( t + h _  h ) 2 , z  + ~ k :  , 

k4 = f(t + h , z  + hk3). 
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The classical 'Improved Euler method' and 'Modified Euler method' are obtained by assigning 
to the parameter X in (18) the values 0.5 and 1.0, respectively. 

After some lengthy calculations, the principal error functions for the linear homogeneous 
system (12) are obtained from equation (17), (18) and (19) in the general form 

?( t ,z )  = U(t) z (20) 

where the matrix U(t) takes the form: 
(a) Runge-Kutta of order two, 

U(t) = - . (A"+ 2 A ' A ) - - - ~ ( A A ' + A 3 ) ;  (21) 

(b) Runge-Kutta of order four (classical case), 

1 'A ")  U(t) - 28801 h .... + 7201 (A"'A - - h A " ' )  + ~ - ~  ( h " h ' - - h  

1 1 
+ 480 (A".42 -- 2AA"A + A2A ") -- ~ (A'2A -- 2A'AA'  + 2AA '2) 

1 + 1  
+ --240 (A2A'A - -AA 'A2)  120 (A'A3 - -A3A')  - - - - 1  0 A s (22) 

where the primes denote derivation with respect to t. The equation for the principal-error 
function for the z i solution is then reduced to (from equations (16) and (20)): 

~i = As  i _1_ Uz i, (23a) 
( i  = 1 . . . .  , ~ )  

s~(O) = o. (23b) 

It should be remembered that since the Wronskian refers to the auxiliary initial-value 
problem, pertaining to the boundary-value problem (la, b), the numerical difficulties in a 
neighborhood of a singular matrix E in (7) are not taken into account here. This situation wilt 
occur, for example, in the neighborhood of each eigenvalue of the boundary-value problem 
(la, b) i fk  =M. 

4. The discretization error of  the Wr0nskian 

When evaluating the determinant (10) by a numerical method, the truncation error occurring 
in each one of the z t (i = 1 . . . . .  n) particular solutions (12) will propagate through the deter- 
minant computation. Denoting by D n the determinant value when evaluated numerically 
(admitting zero round-off error), and taking equation (14) into (10) we obtain 
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(24) Dn(z I . . . . .  zn n) = D(z I + e  1 . . . . .  z n + e  n) 

which can be expanded in the form 

On(zln . . . . .  zn n) = D(z  1 . . . . .  z")  + D l ( e  1 ,z  u . . . . .  z n) + . . .  

+ D i ( z  ~ . . . . .  e i . . . . .  z n ) + . . .  + D~(z 2 . . . . .  e n ) + . . .  (25) 

or, from the magnified error definition (15), and equation (25), 

De(t)  = Dn(zln . . . . .  zn) - - O ( z  1 . . . . .  Z n) 

= h v [Da(s I , z 2 . . . . .  z n) + D2(z 1 , s 2 . . . . .  z n) 4- . . . 

+ O n ( z l , . . . , z  n - l , s n ) ]  4-O(h 2p) 

rl 

= h p ~ Di(z 1 . . . . .  s i . . . . .  z n) + O(h 2v) (26) 
i = 1  

where the vector s i (solution of  (23)) constitutes the i th column of  the determinant Dl. 

If we now take the derivative of  De(t)  and neglect the higher-order terms in (26)we come 

up with 

dDe n 
h p ~, , a - D ~ ( z  . . . . .  s '  . . . .  , z  n)  ( 2 7 )  

dt i= a 

where the primes denote derivative with respect to t. Since the derivative o f  an n th  order 

determinant can be expressed as the sum of  n determinants, the ] th  of  which is obtained 

from the original determinant by differentiating its ] th  row (or column), we can substitute 

t h e / t h  row of  the determinant in (27) by the following expression obtained from equations 

(12), (20), and (23), 

and 

z] = ~ ajkz~ (28) 
4 = 1  

s] = ~ ajks]~ + ~ ( t , z ) .  (29) 
k = l  

After some calculations we end up with the expression 

dt = au i = 1  

I1 11 

h p ~ Di(z  1 . . . . .  s i . . . . .  z n ) +  h p ~, Dl(z  . . . . .  9 i ( t , z ) , . . . , z n ) ,  
i = 1  i = 1  

(3o) 



100 

or, after taking equations (26) into (30) and defining the determinant 

I"1 

O~(t) = 
i = l  

D i ( z , . . .  , 9i(t, z) . . . . .  zn),  

we obtain 

(31) 

dDe n 
= ~ aiiDe + hUD¢(t). (32) 

dt i= 1 

We now integrate (32), under the initial condition De(O) = 0 (see equations (23b) and (26)), 

and obtain 

De(t) = h p exp tr[A(t)] a t .  Do(t) exp [ -  tr[A(t)] at] at (33) 

where tr[A(t)] denotes the trace of  matrix A(t). 
The determinant De~(t) in (31) represents the sum of  n determinants, the i th of  which has 

the vector 9i(t, z) in its i th column. I f  we expand the i th determinant in terms of  the elements 
of  its i th  column and rearrange the resulting n 2 terms, we obtain an expression for De~(t) in 
which we have a sum o f n  determinants such that 

n 

Do(t) = Z det 
i = 1  

zl  

. . .  ~?  

n z.  

(34) 

where the i th  row is made up of  the i th elements of the 91 , 92 . . . .  vectors and 9 i = (¢~ . . . . .  
¢~) is the principal error function corresponding to the z i particular solution. 

Substituting the expressions 

n 

= E (35) 
kffi l  

obtained from equation (20), into equation (34), and making use of  Abel's equation ( l l b ) ,  
we obtain 



De(t) =(~k--1 ufi) D(z l ' ' ' ' ' zn)  

=tr[U(t)]D(O) exp(;o t tr[A(~)]d~). 
Taking (36) into (33) we obtain 

De(t) =hPD(O)[exp(ff tr[A(~)]d~)lff 

o r  
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(36) 

fo 
t 

De(t) = hPD(t) tr[U(~)l d~. (37) 

Finally, from equations (1 la), (26) and (37) 

Dn(t) = D(t)[1 + h p f~tr[U(~)] dg] (38) 

which is a remarkably simple expression for the Wronskian of the numerical solution of (1), 

although the expression for the trace of matrix U(t) might become quite involved, as seen 
in equations (21) and (22). 

From equation (38) the relative truncation error of the Wronskian can be defined as 

D.(t) -D(t) ff Ed(t) = D(t) = hp tr[U(~)] d~. (39) 

In those cases where the elements of the matrix A, in (1), are constants, the trace of the 
matrix U(t) is also constant. In these cases the trace can easily be determined from equations 
(21) or (22). Denoting then the value of the trace of U by o, the relative truncation error of 
the Wronskian becomes 

Ed(t) = (ohP)t (40) 

which indicates a linear behavior ofE a (t) with respect to time for the case of constant A. 
On the other hand, if A depends on t and an analytical solution is not available for the 

integral in (38), one must be careful in numerical applications since numerical quadrature 
will be required. 

5. Numerical examples 

In order to test the validity of the results obtained previously, as well as to see how these results 
can be used in the estimation of 'optimum' integration step h, let us study the following cases. 
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I. Bessel's equation o f  order zero 

Consider the boundary-value problem 

d:x  1 dx+ 
dt 2 +--t at x = o, (41) 

x(2) = 0.9187378, 

x(5) = 0.6042942, 

x(8) = 0.4875767, 

x(12) = 0.2358398, 

where the boundary conditions were generated integrating equation (41) by the Runge-Kutta 
method of fourth order with a time step equal to 0.001 in double-precision (15 digits on the 
IBM-370/165 computer where the data were generated). 

Equation (41) can be rewritten, defining z = (x, dx/dt), in the form 

dz  
- -  = A(t)z 
dt 

where 

[o 1] 
A(t)  = 1 - - l i t  " 

(42) 

For the modified Euler method (X = 1), equations (21) and (42) give 

Tr[U(t)] = ~ ~ - -  

and thus, equations (39) and (43) give the following expression for the relative error of the 
Wronskian for the interval of integration (1, t), 

1 [ + l ( . ~ _ l ) ] h 2 .  (44) E a = - 2  lnt  2 

The behavior of the discretizati0n error of the Wronskian was analysed by integrating the 
system (41), with the boundary conditions being met in the least square sense. The modified 
Euler method of integration was employed with double.precision calculations, thus admitting 
a practically null round-off error for results with six or seven digits. The relative error is cal- 
culated, equation (39), by evaluating numerically, during the integration, the Wronskian of 
the system, equation (10), and its exact value, equation ( l ib) .  The results are shown in 
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Figure 1. Discretization error of the Wronskian for Bessel's equation of order zero. Integration by the 
modified Euler method. 

Figure 1 for integrations with several step values. It is seen that the results converge to equation 
(44) for small values of  the step. This should be expected since the magnified error function 
given by equation (15) constitute an asymptotic expression for small steps. 

A very interesting result was obtained in this study for the behavior of the discretization 
error of the Wronskian (calculated as described above), when single precision (six digits on the 
IBM-370/165 machine) was used. The results shown in Figure 2 indicate that for steps greater 
than 0.01 there is practically no round-off errors influence in the estimation of the dis- 
cretization error of the Wronskian. On the other hand, for step values smaller than 0.01 the 
round-off errors dominate completely this calculation. In the same figure is plotted the 
behavior of the discretization and round-off errors of the integration of equation (41) with 
respect to the step size. The discretization errors were obtained by comparing the numerical 
solutions of (41) (average of twenty points) integrated with double precision arithmetic, for 
several values of h, and its exact solution. The round-off errors were obtained comparing the 
solutions of integrations in single and double precision; admitting, thus, the same discretization 
error during these integrations. 

The analysis of the curves in Figure 2 indicates that the total minimum error (discretization 
plus round-off) during the integration process, which occur roughly in the intersection of 
the discretization and round-off error curves, can be estimated from the behavior of the dis- 
cretization error of the Wronskian of the system. For the Bessel's equation (41) it is found that 
the 'optimum' integration step size, using single precision arithmetic, is about 0.01. 
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Error behavior with respect to the integration step for Bessel's equation of order zero. 

II. Two degrees o f  freedom system 

Let us consider the solution of  the linear system 

d 2 x  + 0.4 dx d~ 
dt 2 ~ -  + 2 x -  0.2 - ) ,  = O, 

d2Y + 0.2 d), + y dx  
at---- 2 -~  - 0.2 ~ - x = 5 sin 3 t, 

x(3)  = 1.980410, x (7)  = -- 1.777150, 

),(3) --- 3.027660, y (7 )  = - -3 .501270,  

x (12)  = 1.526180, 

y (12)  = 2.987220. 

(45) 

Defining the vectors z = (x,  y ,  dx/dt ,  dy /d t )  and a = (0, 0, 0, 5), this system can be rewritten 
in the form 

d z  
- -  = A z + a s i n 3 t  
dt 
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Figure 3. Discretization error of  the Wronskian for the linear system (45). Integration by the modified 
Euler method. 

,6, 

h 

0 ~ 005  THEORETICAL 

@ 0 05  

• 0 I 

• 0 2 

I i | I 

4 8 IZ 16 20  

! 

Figure 4. Discretization error of  the Wronskian for the linear system (45).  Integration by the fourth- 
order Runge-Kutta method. 
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Figure 5. Error behavior with respect to the integration step for the linear system (45). Integration by 
the modified Euler method. 

where 

tl 010 0 i] A = • (46)  
1 - - . 4  

- - 1  . 2  - - .  

Equations (21),  (22) ,  (39) and (46) give the following expression for the discretization error 
of  the Wronskian for the modified Euler method and Runge-Kutta o f  fourth order: 

E a = -- 0 .676 h2t (Euler), 

E a = 0.135 h4t (Runge-Kutta). 

(47) 

(48) 



iO - I  

10 - 2  

i O  - 3  

- 4  
I O  

i O  - 5  

- B  
IO 

107 

O DISCRET ERROR WRONSKIAN 

• ROUND-OFF ERROR, X-VARIABLE 

O D I S C R E T  E R R O R  ~ X -VARIABLE 

\, 

i I 

i I 

,'I 

. . . . . . . .  I . . . . . . .  I . . . . . . . .  

10 . 3  IO - 2  ~O - I  I 

h 

Figure 6. Error behavior with respect to the integration step for the linear system (45). Integration by 
the fourth-order Runge-Kutta method. 

The behavior of  these errors with respect to time (t) for this system is shown in Figures 3 
and 4. The same procedure described for the solution of  the Bessel's equation was used to 
obtain the curves indicated. Again, a remarkable agreement is found with the theoretical and 
numerical results for small values of  h. 

Figures 5 and 6 show the results of  the error behavior for modified Euler and fourth-order 
Runge-Kutta integration methods, respectively. These results indicate that the discretization 
error of the Wronskian can also give for this case the 'optimum' integration step-size. For the 
modified Euler method, Figure 5 gives h ~- 0.01 ; and for the fourth-order Runge-Kutta method 
Figure 6 gives h = 0.1. In both cases single precision arithmetic is assumed to be employed 
during the numerical integration procedures. 

6. Concluding remarks 

A relatively simple expression was obtained for the discretization error of  the Wronskian of  
linear systems for single-step numerical integration techniques. The results indicate that: 
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(i) the theoretical expressions for the error of the Wronskian (a scalar) agree fairly well with 
the numerical calculations; (ii) for linear systems with variable coefficients, the calculation 

of the error might become quite cumbersome, specially for higher-order methods; (iii) for 
linear systems with constant coefficients, the calculation of the error is very simple; (iv) from 
the analysis of the computed value of the Wronskian, during the integration procedure, its 
exact value (from Abel's equation), as well as from the expected error behavior of the error 
(obtained in this work), it is possible, in some cases, to estimate 'optimum' integration steps 

in the sense that the total error during the numerical computation is kept at a minimum value. 
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